Tetrahedron Letters, Vol.27, No.2, pp 155-15**8**, 1986 0040-4039/86 \$3.00 + .00
Printed in Great Britain **Danmer 1986** Pergamon Press Ltd. 01986 Pergamon Press Ltd.

DESULFURIZATION OF GLYCOSYL ISOTHIOCYANATES WITH TRIBUTYLTIN HYDRIDE

Zbigniew J. Witceak

Department of Biochemistry, Purdue University West Lafayette, Indiana 47907 U.S.A.

Summary: Deeulfuriaation of glycosyl isothiocyanates with tributyltin hydride in the presence of AIBN led to the formation of $1,5$ -anhydro-D-alditols via intermediate isocyanides.

Glycosyl isothiocyanates are useful and versatile intermediates for the synthesis of nucleoside analogs^{1,2}, since the isothiocyanato group can be readily transformed into a variety of other functional groups. One such transformation is reduction of the ieothiocyanato function to the isocyanide by triethyl phosphite 3 , triethyl phosphine 4 or by triphenyl $^{\rm H}$ hydride⁵ as reported for aryl and alkyl isothiocyanates. The synthetic approach which has been reported for synthesis of glucosyl isocyanides⁶ proceeds by nucleophilic attack of the ambident cyanide ion on glycosyl halides⁶⁻⁹ or by the dehydration of corresponding <u>N</u>-glycos formamides. 10 However, the glycosyl isocyanides 11 have not yet been prepared by reduction of the corresponding isothiocyanates. This encouraged us to use tributyltin hydride for reduction of the isothiocyanato group similarly to isoselenocyanato as recently reported.¹² However, a recent report in the literature indicates that the isocyanide function could be further reduced to the corresponding deoxy derivative. $13-16$ It was found that the yields and the ratio of products of the desulfurization reaction are strongly dependent on time, temperature, and the presence of a free-radical initiator (AIBN/azo-bis-(isobutyronitrile).

Isocyanides $6-10$ were obtained in good yields (76-58%) when the reaction was carried out with 1 equivalent of tributyltin hydride in ether solution at room temperature for 2-6 h (Table I) under N₂ atmosphere. Under these conditions, in the case of compounds 2 , 2 , and 4 , the formation of coproducts, i.e. 1,5-anhydro-alditols 12 , 13 , and 14 in 1-3% yield has been observed. At 40' in ether/benzene solution with a catalytic amount of AIBN for 4-6 h the yields of isocyanides 6-10 was decreased to 30-51% and the formation of 1,5-anhydro-alditols $11-15$ was observed in 12-41% yield. The reaction was monitored by TLC (AcOEt/CH₂C1₂/MeOH, 7:2:1, V/V) and products were separated by flash column chromatography using the same solvent system.

Under forcing conditions - in toluene at reflux temperature for 6-1Oh and in the presence of a catalytic amount of AIBN $(N_2$ -atmosphere)-reduction of isothiocyanates $\underline{1-5}$ led to the formation of 1,5-anhydro-alditols $11-15$ in 82-94% yield. However, trace amounts of intermediate isocyanides $6-10$ in 1-2% were also observed, as indicated by TLC.

156

Table I

Reduction of isocyanides $6-10$ under the conditions as for isothiocyanates 1-5 produced 1,5-anhydro-alditols 11-15 in near quantitative 89-94% yield. These results clearly indicate that the isocyanide function can be reduced with tributyltin hydride only at elevated temperature and in the presence of radical initiator (AIBN) - (radical character reaction). No anomerization or isomerization to the cyanides, was observed under these conditions.,

In contrast the isothiocyanato function easily undergoes desulfurization with tributyltin hydride at room temperature, and without radical initiation by AIBN. The selectivity of this reaction gives good access to preparation of the required anomer of monosaccharride isocyanides which was available only as an anomeric mixture by the previous method. $6-11$

Acknowledgement - The author expresses appreciation to Mr. Brian Tobias (Dept. of Chemistry) for help in recording 1 H and 13 C NMR spectra, and Dr. James R. Daniel for helpful discussion. Notes and references

- 1. Z.J. Witczak, <u>Adv. Carbohydr. Chem. Biochem</u>., 44, in press (1986)
- ². H. Ogura and H. Takahashi, <u>Heterocycles, 6</u>, 1633 (1977
- 3. T. Mukaiyama, H. Nambu and M. Okamoto, J. Org. Chem., 27, 3651 (1962).
- 4. A.W. Hofmann, <u>Ber</u>., <u>3</u>, 766 (1870
- 5. D.H. Lorrenz and E.J. Becker, J. Org. Chem., 28, *1707* (1963).
- 6. P. Boullanger and G. Descotes, Tetrahedron Lett., 3427 *(1976).*
- *7. M.* Martin-Lomas and M.E. Chacon-Fuertes, Carbohvdr. Res., 59, 604 (1977).
- 8. P. Boullanger, D. Marmet and G. Descotes, <u>Tetrahedron, 35</u>, 163 (1979
- 9. D. Marmet, P. Boullanger and G. Descotes, Can. J. Chem., 59, 373 (1981).
- 10. R.J. Nolte, J.A.J. Van Someren and J.W. Zwikker, <u>J. Org. Chem., 43,</u> 1972 (1978)
- 11. For review on monosaccharide isocyanides see; Z.J. Witczak, <u>J. Carbohydr. Chem</u>., <u>3</u>, 359 (1984).
- 12. Z.J. Witczak, <u>Tetrahedron, 41</u>, in press (1985)
- 13. D.H.R. Barton, G. Bringmann, G. Lamotte, W.B. Motherwell, R.S.H. Motherwell and A.E.A. Porter, J. Chem. Soc. Perkin. Tr. 1., 2657 (1980).
- 14. D.H.R. Barton, G. Bringmann, G. Lamotte, R.S.H. Motherwell and W.B. Motherwell, Tetrahedron Lett., 2291 (1979).
- 15. D.H.R. Barton, G. Bringmann and W.B. Motherwell, J. Chem. Sec. Perkin Tr. 1, 2665 (1980).
- 16. D.H.R. Barton, W. Hartwig and W.B. Motherwell, J. Chem. Soc. Chem. Commun., 447 (1982).
- 17. E. Fischer, Ber., 47, 1377 (1914); a., A. Müller and A. Wilhelms, ibid; 74, 698 (1941).
- 18. F. Micheel, H. Petersen and H. Kochling, Chem. Ber., 93, 1 (1960).
- 19. The starting 2,3,4-tri- Q -acetyl- β - D -xylopyranose isothiocyanate (4) was prepared according to the recent procedure of M.J. Camarasa, P. Fernandez-Resa, M.T. Garcia-Lopez, F. C. De Las Heras, P.P. Mendez- Castrillon and A. San Felix, Synthesis 509, (1984). M.p. 72-73⁰ (ether/hexane); $[\alpha]_{20}^{D}$ -31.2⁰ (c 1.2 CHC1₃); ¹H-NMR (200 MHz), 1.95, 2.02, 2.06 (S 9H, 3x OAc) 5.9 (t, 1H, $J_{2,3} = J_{3,4} = 4$ Hz, H-3), 4.8(d 1H, $J_{1,2} = 9$ Hz H-1), 4.5-4.2 (m, 3H H-1,2,4) 4.07(q 1H, $J_{5a, 5e} = 12$ Hz, H-5e), 3.4 (q 1 H, H-5a); ¹³C-NMR (50.3 MHz); 91.7 $(C-1)$, 69.4 $(C-2)$, 70.9 $(C-3)$, 68.2 $(C-4)$, 62.6 $(C-5)$ and 141.3 $(N=\underline{C}=S)$. Anal. Calc. for $C_{12}H_1$ NO₇S; C, 45.41; H, 4.36; N, 4.41; Found: C, 45.02; H, 4.6; N, 4.69.
- 20. The starting 2,3,4-tri- Q -acetyl- β -L-arabinose isothiocyanate (5) was prepared according to the method of K.K. De, G.T. Shiau and R.E. Harmon, J. Carbohydr. Nucleos. Nucleot., 2, 171 (1975); $[\alpha]_{20}^D$ - 45.5[°] (c. 1.0 CHC1₃); ¹H-NMR (200 MHz); 1.87, 1.93, 2.00 (s 9H, 3x CH₃CO-) 4.1 (q 1H, $J_{5a, 5e}$ = 12Hz, H-5e, 3.8 q 1H, H-5e), 4.86 (d 1H, $J_{1, 2}$ = 9 Hz, H-1), 5.16 (q 1H, $J_{2,3}$ 10Hz, $J_{3,4}$ 3.2 Hz, H-3), 5.4 (q 1H, H-2), ¹³C-NMR (50.3 MHz); 93.8 $(c-1)$, 69.3 $(c-2)$, 69.8 $(c-3)$, 69.8 $(c-4)$, 63.6 $(c-5)$, 141.4 $(N=C=S)$.
- 21. ¹H-NMR (200 MHz); (CDC1₃), 1,87, 1.93, 1.96, (s 9H 3x 0Ac), 2.01 (s 3H NAc), 4.1 3.4 broad m $(H-2,3,4,5)$ 4.29 (d, 2H, H-6,6^o), 4.67 (d 1H, $J_{1,2} = 12$ Hz H-1), 6.27d (1H, J = 8Hz NH), 13 C-NMR (50.3 MHz); 102,3 (C-1), 56.0 (C-2), 74.3 (C-3), 70.6 (C-4), 76.1 (c-5), 61.5 (c-6), 164.1 (\hat{N} =C), Anal. Calc. for C₁₄H₂₀N₂O₉; C, 46.66; H, 5.59; N, 7.77; Found: C, 46.18; H, 5.67; N, 7.31.
- 22. ¹H-NMR (60 MHz); (CDC1₃), 1.97, 2.01, 2.09 (s 9H 3x0Ac), 5.1 (t 1H H-3), 4.86 (d 1H, $J_{1,2}$ = 9Hz H-1), 4.6-4.2 (m 3H H-1,2,4, 4.1 (q 1H H-5), 3.4 (q 1H - H-5). 13C-NMR (50.3 MHz); $(CDC1₃)$ 91.7 $(C-1)$, 69.4 $(C-2)$, 70.9 $(C-3)$, 68.3 $(C-4)$, 62.6 $(C-5)$, 164.3 $(\tilde{N}=C)$; Anal. Calc. for C₁₂H₁₅NO₇; C, 50.52; H, 5.3; N, 4.91; Found: C, 49.96; H, 5.41; N, 4.58.
- 23. ¹H-NMR (60 MHz); (CDC1₃) ; 1.86, 1.91, 2.01 (S, 9H 3x0Ac), 4.16 (q H-5), 3.86 (q 1H $H-5^1$, 4.79 (d 1H $J_{1,2} = 9$ Hz, H-1, 5.0 (q 1H H-3), 5.46 (q 1H H-2). 13 C-NMR (50.3 MHz); $(CDC1₃)$ 93.7 $(C-1)$, 69.1 $(C-2)$, 69.6 $(C-3)$, 69.6 $(C-4)$ 63.5 $(C-5)$, 164.1 $(\tilde{N}=C)$. Anal. Calc. for C₁₇H₁₅NO₇; C, 50.52; H, 5.3; N, 4.91; Found: C, 50.02; H, 5.01; N, 4.69.
- 24. E.J. Hedgley and H.G. Fletcher, Jr., J. Am. Chem. Soc., 85, 1615 (1963); J. Auge and S. David, Carbohydr. Res., 59, 255 (1977).
- 25. P. Kocienski, and C. Pant, Carbohydr. Res., 110, 330 (1982).
- 26. W. Meyer Zu Reckendorf and W.A. Boner, Chem. Ber., 94, 2431 (1967); D. Horton and M. L. Wolfrom, J. Org. Chem, 27, 1796 (1962).
- 27. H.G. Fletcher and C.S. Hudson, J. Am. Chem. Soc., 69, 921 (1947).
- 28. H.G. Fletcher and C.S. Hudson, J. Am. Chem. Soc., 69, 1672 (1947).

(Received in USA 23 October 1985)